Cadmium yellows and arsenic sulfides

Degradation of chrome yellow pigments

Cadmium sulphide exists in two crystalline and one amorphous form. The hexagonal form (-CdS) is found in nature as the mineral greenockite while the cubic form (ß-CdS) is called hawleyite; greenockite is frequently used as yellow pigment in modern paints. Manufacturers started to make intense use of this pigment from the moment cadmium became commercially available as a base material (around the 1840’s). This popularity was mainly due to the pigment’s high tinting and covering power, bright yellow colour, wide applicability (artists’ paint, metallurgy, ceramics, medical use, etc.) and suitability for mass production. In addition, at the beginning of the 20th century, CdS was thought to be highly stable in oil paint and water colours, which was not the case for chrome yellow, the only bright yellow alternative available for painting at that time. Consequently, prominent 19th-20th century painters such as Claude Monet, Vincent Van Gogh and Pablo Picasso frequently employed CdS, as was amply documented by earlier analytical research. Yet, in spite of its excellent reputation with regards to permanency, fading of the yellow colour of CdS and loss of adhesion of the oil paint has been reported. The different experiments performed in this context at ID21 aimed i) at understanding the composition of fragments from historical paintings (by Matisse, Van Gogh, Ensor), in particular the original pigment and its synthesis side products as well as degradation products and ii) performing similar studies on model paints aged in controled conditions.

monico_2018TOC.png

Monico, L., Chieli, A., De Meyer, S., Cotte, M., de Nolf, W., Falkenberg, G., ... & Miliani, C. "Role of relative humidity and Cd/Zn stoichiometry in the photo‐oxidation process of cadmium yellows (CdS/Cd1‐xZnxS) in oil paintings". Chemistry–A European Journal (2018), in press.

Cadmium yellows (CdYs) refer to a family of cadmium sulfide pigments which have been widely used by artists since the late 19th c. Despite being considered stable, they are suffering from discoloration in iconic paintings, such as Joy of Life by Matisse, Flowers in a blue vase by Van Gogh and the Scream by Munch, most likely due to the formation of CdSO₄·nH₂O. Questions about what the factors driving the CdYs degradation are and how they affect the overall process are still open. Here, we study a series of oil mock‐up paints made of CdYs of different stoichiometry (CdS/Cd₀.₇₆Zn₀.₂₄S) and crystalline structure (hexagonal/cubic) before and after aging at variable relative humidity under exposure to light and in darkness. Synchrotron‐based X‐ray methods combined with UV‐Visible and FTIR spectroscopies show that: (i) Cd₀.₇₆Zn₀.₂₄S is more susceptible to photo‐oxidation than CdS; both compounds can act as photocatalysts for the oil oxidation. (ii) The photo‐oxidation of CdS/Cd₀.₇₆Zn₀.₂₄S to CdSO₄·nH₂O is triggered by moisture. (iii) The nature of alteration products depends on the aging conditions and Cd/Zn stoichiometry. Based on our findings, we propose a scheme for the mechanism of the photocorrosion process and photocatalytic activity of CdY pigments in the oil binder. Overall, our results form a reliable basis for understanding the degradation of CdS‐based paints of artworks and contribute towards developing better ways of preserving them for future generations.

Sulfide pigments 1.jpg

E. Pouyet, M. Cotte, B. Fayard, M. Salomé, F. Meirer, A. Mehta, E. S. Uffelman, A. Hull, F. Vanmeert, J. Kieffer, M. Burghammer, K. Janssens, F. Sette and J. Mass, "2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse", Applied Physics A, 121, 967 (2015).

The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse’s The Joy of Life (1905–1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse’s paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration—the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse’s Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role previously suggested in other altered yellow paints.

Sulfide pigments 2.jpg

J. L. Mass, R. Opila, B. Buckley, M. Cotte, J. Church and A. Mehta, "The photodegradation of cadmium yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906)", Applied Physics A, 111, 59-68 (2013).

Evidence for the alteration of the yellow paints in Henri Matisse’s Le Bonheur de vivre (1905–1906, The Barnes Foundation) has been observed since the 1990s. The changes in this iconic work of Matisse’s Fauvist period include lightening, darkening, and flaking of the yellow paints. Handheld X-ray fluorescence (XRF) and multispectral imaging surveys reveal that the degradation is confined to cadmium yellow (CdS) paints. The discoloration of cadmium yellow paints in Impressionist, Post-Impressionist and early modernist work from the 1880s through the 1920s has been ascribed to the photo-oxidative degradation of CdS. Preliminary investigations of the degraded yellow paints in this work involved Cd LIII-edge X-ray Absorption Near Edge Spectroscopy (XANES) at the Stanford Synchrotron Radiation Light Source (SSRL Menlo Park, California) and Scanning Electron Microscopy-energy dispersive X-ray analysis (SEM-EDS) at the Winterthur Museum Scientific Research and Analysis Laboratory. To determine if the visual changes in the paints did in fact indicate photo-oxidative degradation and if different chemistries could be observed for the lightened versus darkened regions, synchrotron radiation-micro Fourier Transform InfraRed (SR-μFTIR) spectroscopy, X-ray Fluorescence (SR-μXRF) mapping and micro X-ray Absorption Near Edge Spectroscopy (μXANES) mapping at the Cd LIII-edge of the altered paint cross-sections were carried out at the European synchrotron radiation facility (ESRF, Grenoble, France) beamline ID-21. The goal is to elucidate the discoloration mechanisms observed in the paint using elemental and speciation mapping. The μXANES mapping and SR-FTIR imaging showed a substantial enrichment of CdCO3 in the off-white surface crust of the faded/discolored CdS paint. This suggests that the CdCO3 is present as an insoluble photodegradation product rather than solely a paint filler or starting reagent. Additionally, oxalates and sulfates were found to be concentrated at the alteration surface.

Sulfide pigments 3.jpg

G. Van der Snickt, K. Janssens, J. Dik, W. De Nolf, F. Vanmeert, J. Jaroszewicz, M. Cotte, G. Falkenberg and L. Van der Loeff, "Combined use of Synchrotron Radiation Based Micro-X-ray Fluorescence, Micro-X-ray Diffraction, Micro-X-ray Absorption Near-Edge, and Micro-Fourier Transform Infrared Spectroscopies for Revealing an Alternative Degradation Pathway of the Pigment Cadmium Yellow in a Painting by Van Gogh", Analytical Chemistry, 84, 10221–10228 (2012).

 

Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO4·H2O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting “Flowers in a blue vase” by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO4 compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd2+ ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO42– anions, for their part, found a suitable reaction partner in Pb2+ ions stemming from a dissolved lead-based siccative that was added to the varnish to promote its drying. The resulting opaque anglesite compound in the varnish, in combination with the underlying CdC2O4 layer at the paint/varnish interface, account for the orange-gray crust that is disfiguring the painting on a macroscopic level. In this way, the results presented in this paper demonstrate how, through a judicious combined use of several microanalytical methods with speciation capabilities, many new insights can be obtained from two minute, but highly complex and heterogeneous paint samples.

Sulfide pigments 4.jpg (Microsoft Word - $ASQ474320_File000015_3583010.jpg-hi.forpdf.htm)

G. van der Snickt, J. Dik, M. Cotte, K. Janssens, J. Jaroszewicz, W. De Nolf, J. Groenewegen and L. van der Loeff, "Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques", Analytical Chemistry, 81, 2600-2610 (2009).

On several paintings of James Ensor (1860−1949), a gradual fading of originally bright yellow areas, painted with the pigment cadmium yellow (CdS), is observed. Additionally, in some areas exposed to light, the formation of small white-colored globules on top of the original paint surface is observed. In this paper the chemical transformation leading to the color change and to the formation of the globules is elucidated. Microscopic X-ray absorption near-edge spectroscopy (μ-XANES) experiments show that sulfur, originally present in sulfidic form (S2−), is oxidized during the transformation to the sulfate form (S6+). Upon formation (at or immediately below the surface), the highly soluble cadmium sulfate is assumed to be transported to the surface in solution and reprecipitates there, forming the whitish globules. The presence of cadmium sulfate (CdSO4·2H2O) and ammonium cadmium sulfate [(NH4)2Cd(SO4)2] at the surface is confirmed by microscopic X-ray diffraction measurements, where the latter salt is suspected to result from a secondary reaction of cadmium sulfate with ammonia. Measurements performed on cross sections reveal that the oxidation front has penetrated into the yellow paint down to ca. 1−2 μm. The morphology and elemental distribution of the paint and degradation product were examined by means of scanning electron microscopy equipped with an energy-dispersive spectrometer (SEM-EDS) and synchrotron radiation based micro-X-ray fluorescence spectrometry (SR μ-XRF). In addition, ultraviolet-induced visible fluorescence photography (UIVFP) revealed itself to be a straightforward technique for documenting the occurrence of this specific kind of degradation on a macroscale by painting conservators.

Sulfide pigments 9.jpg

K. Keune, J. Mass, F. Meirer, C. Pottasch, A. van Loon, A. Hull, J. Church, E. Pouyet, M. Cotte and A. Mehta, "Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses", Journal of Analytical Atomic Spectrometry, 30, 813-827 (2015).

Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments. This paper shows that after photo-degradation, various oxidation and migration processes take place. Synchrotron radiation (SR) micro-X-ray fluorescence (μ-XRF) reveals arsenic to be distributed throughout the whole multi-layered paint system. Arsenic (As) K-edge micro-X-ray absorption near edge structure (μ-XANES) analyses indicate the presence of an intact AsxSy pigment, arsenite compounds (As3+; As2O3), and arsenate compounds (As5+); the latter are certainly present as calcium, lead, aluminium and iron arsenates. Sulfur (S) K-edge μ-XANES points to the conversion of the sulfide (S2−) group to a sulfate (SO42−) group, probably via an elemental sulfur (S0) or sulfoxide (S2+) compound. Principal Component Analysis (PCA) and subsequent k-means clustering of multi-energy SR μ-XRF maps and μ-XANES were performed to identify the various arsenic species and visualize their distribution. The arsenates (As5+) are spread throughout the entire paint system and dominate the photo-degraded paint and ground layers, while the arsenite compounds (As3+) are located close to the intact arsenic sulfide pigment. The oxidation of arsenic trioxide into arsenates likely takes place in aqueous solutions. The presence of As5+compounds in the paint systems indicates that the arsenic trioxide is dissolved by ambient water present in the paint. Arsenite and arsenate compounds are water soluble and are transported by water throughout the paint system. This knowledge is crucial for the conservation field, as this is the first time that (indirect) evidence of water transport within paintings has been given.